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Structure of completely positive quantum master equations with memory kernel
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Semi-Markov processes represent a well-known and widely used class of random processes in classical
probability theory. Here, we develop an extension of this type of non-Markovian dynamics to the quantum
regime. This extension is demonstrated to yield quantum master equations with memory kernels which allow
the formulation of explicit conditions for the complete positivity of the corresponding quantum dynamical
maps, thus leading to important insights into the structural characterization of the non-Markovian quantum
dynamics of open systems. Explicit examples are analyzed in detail.
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I. INTRODUCTION

Dissipation, damping, and dephasing phenomena in the
dynamics of open quantum systems can often be modeled
through the standard techniques of the theory of quantum
Markov processes in which the open system’s density matrix
is governed by a quantum master equation with Lindblad
structure [1,2]. However, in the description of complex
quantum-mechanical systems one encounters in many physi-
cally relevant cases a complicated non-Markovian behavior
[3] that cannot be described by means of these standard
methods. In fact, non-Markovian systems feature strong
memory effects, finite revival times caused by long-range
correlation functions, and nonexponential damping and de-
coherence which generally render impossible a theoretical
treatment through a dynamical semigroup (see, e.g., Refs.
[4-13]). As a consequence the analysis of non-Markovian
quantum dynamics is extremely demanding. Even in the re-
gime of classical probability theory it is difficult to formulate
general equations of motion for the probability distributions
of non-Markovian processes. In quantum mechanics the situ-
ation is even more involved since the classical condition of
the preservation of the positivity for the distribution func-
tions is to be replaced by the stronger condition of complete
positivity for the resulting quantum dynamical maps.

In classical probability theory and the theory of stochastic
processes there exists however a well-established and widely
used class of non-Markovian processes, namely, the class of
semi-Markov processes [14—18]. It is thus natural to investi-
gate possible generalizations of this type of processes to the
quantum case. Recently we have proposed such a generali-
zation, leading to the concept of a quantum semi-Markov
process [19]. In the present paper we elaborate the details of
this approach and indicate a number of further examples of
applications of the theory. The class of quantum processes
constructed here is demonstrated to yield generalized master
equations with memory kernel and to allow the mathematical
formulation of necessary and even necessary and sufficient
conditions which ensure the complete positivity of the corre-
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sponding quantum dynamical maps. Indeed the formulation
of such conditions for non-Markovian master equations is a
highly nontrivial task [4,20-22]. Recently attempts have also
been made to derive non-Markovian time evolutions by the
construction of suitable Kraus representations for the dy-
namical maps [23,24].

The paper is organized as follows. Section II contains a
short introduction into the theory of classical semi-Markov
processes. We define the fundamental quantities, such as the
semi-Markov matrix, the survival probabilities, and the wait-
ing time distributions, derive the generalized master equation
and the structure of the classical memory kernel, and discuss
several examples for classical memory functions and waiting
time distributions. The generalization of these concepts to
the quantum case is developed in Sec. IIl. We introduce a
class of quantum master equations with memory kernel and
formulate explicitly the corresponding conditions for the
complete positivity of the quantum time evolution. A number
of examples and applications is also discussed. Finally, some
conclusions are drawn in Sec. IV.

II. CLASSICAL SEMI-MARKOYV PROCESSES

In the present section we want to give a brief introduction
to classical semi-Markov processes, focusing on the basic
quantities necessary in order to describe and uniquely deter-
mine such processes. In particular building on these quanti-
ties we will be able to explicitly derive a generalized master
equation for the time evolution of the conditional transition
probabilities of the process, which is the starting point for a
generalization to the quantum case. General references to the
subject are typically found in the mathematics literature
[14-16] (see also the monograph [17]), even though ex-
amples of classical semi-Markov processes have been exten-
sively studied in the physics literature under the name con-
tinuous time random walk (see [18] for a comprehensive
treatment and references therein).

A. Semi-Markov matrix

Semi-Markov processes naturally generalize Markov pro-
cesses by combining the theory of Markov chains and of
renewal processes [25]. In a Markov chain a system jumps
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among different states according to certain probabilities de-
pending on departure and arrival states; the time spent in a
given state being immaterial. A renewal process is instead a
counting process in which the times among successive
events are independent identically distributed random vari-
ables characterized by an arbitrary common waiting time dis-
tribution, the adjective renewal stressing the fact that the
process starts anew at every step. If this waiting time distri-
bution is of exponential type one obtains as a special case of
renewal process a Poisson process, in fact the exponential is
the only memoryless distribution leading to a Markov count-
ing process. In this case knowing that a system has already
been in a state for a given amount of time provides no addi-
tional information on the expected time of the next jump. By
combining the two features a semi-Markov process describes
a system moving among different states according to fixed
transition probabilities, so that the sequence of visited states
forms a Markov chain, spending a random time in each state.
These random sojourn times however are described by a
waiting time distribution which is not necessarily of expo-
nential type, as in a Markov process, and which might de-
pend both on the present state and on the immediately fol-
lowing one. If one only considers the different states visited
by a semi-Markov process one recovers a Markov chain,
while if the state space is reduced to a single point one re-
covers a renewal process.

A semi-Markov process is uniquely determined introduc-
ing a so-called semi-Markov matrix Q,,,(7), which gives the
probabilities for a jump from a state n to a state m in a time
7. More precisely, given that the process arrived in the state
n at time 1, Q,,,(7) denotes the probability that it jumps to the
next state m no later than time 7+ 7. The semi-Markov matrix
can be expressed through the corresponding densities g,,,,(7)
defined by

dQ,y(7) = @ ()T, (1)

which represent a collection of state dependent waiting time
distributions. If a jump eventually occurs with certainty the
following normalization holds:

> f A7y (7) = 1. (2)
m 0

In terms of the state-dependent waiting time distribution
¢un(7) one can naturally introduce the survival probability

gn(T) =1- E f dsqmn(s)’ (3)
m Y0

that is the probability not to have left state n by time 7. For
the case in which the waiting time distribution for the next
jump to take place does only depend on the initial state one
has the factorization

D7) = T f (7). (4)

with 1, the transition probabilities of the corresponding
Markov chain satisfying X,,,,,=1 and f,(7) a normalized
waiting time distribution. Correspondingly one also has the
factorization Q,,,(7)=m,,,F,(7), with F,(7) the cumulative
distribution function providing the probability of a jump out
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of state n in a time 7. If the system can get stuck in some
state n, the corresponding f,(7) is not normalized to one and
Eq. (2) becomes a strict inequality.

It is of interest to consider the form of g,,,,(7) correspond-
ing to a Markov process. Such a process is recovered for a
factorizing expression of the form

qmn(T) = 7Tmn)\ne_}\n7-3 (5)
with corresponding survival probability given by
gn(1) =™, (6)

Denoting by h(u) the Laplace transform of a function h(7)
defined on the positive real line,

h(u) = f v drh(T)e™, (7)
0

we observe for later use that in Laplace representation semi-
Markov matrix and survival probability for a Markov pro-
cess read

A
4 - —n 8
an(u) 7Tmn + )\n ( )
and
1
- ’ 9
&= )

respectively. This choice corresponds to an exponential wait-
ing time distribution f,(7)=\,e™", leading to the following
memoryless property. Let us denote by 7, the random vari-
able giving the time spent in state n, and let us consider the
conditional probability for a jump out of n to take place after
a time 7+s, given that no jump has taken place up to time s,
one immediately has from Eq. (6)

Pr,>t+s}

P{r, >t+s|t, >s)= =e M, 10
{7 s|7, > s} Plr > s} e (10)

so that this conditional probability does not depend on the
time already spent in site n. This lack of memory only holds
for an exponential distribution, whose survival probability is
given by the simple exponential (6). For all other possible
choices of the semi-Markov matrix semi-Markov processes
are indeed non-Markovian.

B. Generalized master equation

We now want to obtain a generalized master equation for
the conditional transition probabilities of a classical semi-
Markov process starting from the central quantity given by
the semi-Markov matrix g,,,(7). Such a generalized master
equation is the counterpart for the non-Markovian case of the
Pauli master equation, which is reobtained as a special case
when memory effects are absent. To do this we will follow a
straightforward and intuitive path, exploiting an analog of
the Kolmogorov forward equation for standard Markov pro-
cesses, written in Laplace representation. Another slightly
more indirect route can be found in [26], which already rep-
resented an endeavor to give a simple derivation of the gen-
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eralized master equation. The point is not entirely trivial, as
can be seen from the amount of literature devoted in the
physics community to relate continuous time random walks,
which provide examples of semi-Markov processes, to gen-
eralized master equations (see, e.g., [27] and references
therein).

As a starting point we consider the Kolmogorov forward
equations for a Markov process, which can be immediately
written down using arguments of probabilistic nature [15].
We denote by T,,(r) the conditional transition probability,
i.e., the probability for the process to be in the state m at time
¢t under the condition that it started in state n at time zero.
These quantities obey the equation

!
Tmn(t) = 5mne_)\"t + f dTE e_)\m(t_r)wmk)\kan(T) s (1 1)
0 k

where the two terms on the right hand side (rhs) correspond
to contributions in which the system has performed zero or at
least one jump, respectively. Thus the first expression on the
rhs gives the probability not to have left state n, expressed by
means of the survival probability of a Markov process
g,(7)=e™™". The second expression argues on the last jump
performed, summing over paths in which the system goes
from state n to a state k in a time 7 and makes at this point
his last jump from k to m, with probability density 7, A,
dwelling there for the remaining time ¢—7. This equation is
most easily dealt with in Laplace representation, coming to

7Awmn(l’t) = dnngAm(u) + 2 gAm(M)ka)\kfkn(u) s (12)
k

and further recalling Egs. (8) and (9),

qu(”)
8ilu)
where the ratio between Laplace transform of semi-Markov

matrix and survival probability appears, which we will gen-
erally denote as

mn(u) mngm M) + 2 gm( ) Tkn(u) (13)

quk(u)

W)= @)

(14)

We have thus recast the Kolmogorov forward equations in a
form where only the semi-Markov matrix and the related
survival probability appear, starting from their specific ex-
pressions for the case of a Markov process. We now extend
these equations to allow for a general semi-Markov matrix,
thus obtaining a set of equations playing the role of Kolmog-
orov forward equations for a semi-Markov process, first ob-
tained by Feller [14]. Recalling that due to Eq. (3) the gen-
eral expression for the Laplace transform of the survival
probability in terms of the semi-Markov matrix is given by

1- Em émn(”)
gn(u)='—--:;-————, (15)

and subtracting the term 3,d,,,(u)7,,,(1) from both sides of

Eq. (13) one comes to
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m,l(u)[l 5 qkmw)]

= Bl + (0 2 Ll ) = 2 0T o),
8(u)
(16)
and finally diving by g,,(u) one obtains
MTmn(u) - 5mn = E [ka(u)fkn(u) - ka(u)’imn(u)]
k
(17)

Taking the inverse Laplace transformation of this equation
and using 7,,,(0)=35,,, one is thus immediately led to the
generalized master equation

Tmn(t) = f dTE [ka(T)Tkn(t - T) - ka(T)Tmn(t_ T)]
0 k
(18)

Denoting by P,(7) the probability to be in state n at time ¢
starting from a fixed state at the initial time zero one can also
write this equation as

_Pn(t) = f dTE [an(T)Pm(t_ T) - Wmn(T)Pn(t_ T)]
0 m

(19)

C. Classical memory kernel

The matrix of functions W,,(f) can be naturally called
classical memory kernel and is given by the inverse Laplace
transform of Eq. (14), expressed in the time domain through

%Aﬂ=fdﬂhﬁﬂ&ﬁ—ﬂz(mm*&ﬂﬂ,(%)
0

where * denotes as usual the convolution product or more
compactly in terms of the Laplace transformed quantities

Gun(@) U Gp,(u)
&) 1= 4, (u)
As one immediately checks, in the Markovian case the

memory kernel is given by a matrix of positive constants
times a delta function

Wi(11) = (1)

W) =T,,,28(1), (22)
with
Lo = o (23)
thus satisfying
Tm=0, XT,,=\, (24)

leading to the usual Pauli master equation
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d
5 Pal0 = D [T P () = T Po(0)]. (25)

Note in particular that the positivity and the normalization of
the coefficients I',,, naturally allow an interpretation as tran-
sition probabilities per unit time, i.e., as transition rates, a
simple picture which is no more available in the general
case. In fact, the functions W,,,(¢) can take on negative val-
ues even when obtained from a well-defined semi-Markov
matrix, as we will show with simple examples.

To do this let us first consider in detail the situation de-
scribed in Eq. (4), corresponding to factorized contributions
in the semi-Markov matrix [26]. We note that in this case the
survival probability simply reads

gn(T) =1- f dsfn(s)a (26)
0

implying for the memory kernel a factorized expression of
the form

Wmn(t) = szlkn(t) > (27)

where the memory functions k() relate waiting time distri-
bution f,(7) and survival probability g,(7) through the inte-
gral relation

fn(T) = f dSkn(S)gn(T_ S) = (kn * gn)(T)7 (28)
0

corresponding to Eq. (20). Also in this case it is convenient
to express these identities in the Laplace domain, so that one
has

= - HOR 29)

leading to a factorized expression for the memory kernel

Wmn(u) = ’n-ﬂ"‘llgn(u) = Wmn{‘n(u) b (30)
8n(u)

which together with Eq. (29) yields the following one-to-one
correspondence between k, (1) and f,(u):

1 _f‘n(u)

This relation provides the most direct way to obtain the
memory function k,(#) given a certain waiting time distribu-
tion f,(7).

It immediately appears from Eq. (27) that the positivity of
the matrix elements of the memory kernel for the considered
class of factorized expressions depends on the positivity of
the memory functions k,(r). We will now consider simple
and natural examples of waiting time distributions leading to
negative memory functions, at variance with what happens in
the Markovian case. To this end the dependence on the index
n is not relevant, since we are only interested in showing that
a well-defined waiting time distribution f(7) associated to a
fixed state of the system can correspond to a negative func-

k, (1) = (31)
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tion k(7). This point will turn out to be of particular relevance
in the quantum extension of the model, both in order to iden-
tify the class of admissible memory kernels together with
possible pitfalls and to make contact with relevant physical
models.

Let us consider a general class of waiting time distribu-
tions given by the so-called special Erlang distributions (of
order a € N)

()\T)a_l —\T
(a—l)!e , (32)

whose Laplace transform is simply given by

]?(a)(u) — (L) . (33)
u

+\

GEDY

Such a distribution describes a random variable given by the
sum of a independent identically distributed exponential ran-
dom variables with the same positive parameter N. Exploit-
ing the relation (31) and inverting the Laplace transform,
which is easily done since we are dealing with rational func-
tions, one obtains for the first three orders

D =xe™ kD) =278(1), (34)

FAD =N kD) = NN, (35)

A3 2\? —
= 37’2(“ k31 = y—gsin(v3)\t/2)e_3”/2,
v

(36)

so that for a=3 one indeed has negative contributions in the
memory kernel. On similar grounds one can consider a sum
of exponential random variables characterized by different
parameters, still obtaining a rational function for the Laplace
transform of the waiting time distributions, corresponding to
so-called generalized Erlang distributions. Their expression
is given by

a

N

f<a>(r)=2(HA k)xieﬂﬂ, (37)
i \jri NN

and correspondingly

A
u+N\;

L

fw =11 (38)

In this case for a=1 one is obviously back to a simple expo-
nential distribution, while for a=2 the waiting time distribu-
tion is a difference of two exponential functions

ALY
A=\

fo (D= (eM7— e, (39)

leading to the following positive memory function:
ki) (1) = N Nge= MR, (40)

For a=3 depending on the value of the three parameters
{N\;}i=1..3 the memory function can become oscillatory, thus
taking on negative values, according to
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oMl _ Mt
ki3 (D) = N AN ————, 41
30 =N\ . (41)
with
AN +NA+AN 1
Ne=— =23 (N = Ny = N2 — AN\, (42)

2 2

A complementary example is obtained taking rather than a
sum of exponential random variables a single random vari-
able with a waiting time distribution given by a multiexpo-
nential, that is to say a convex mixture of exponential distri-
butions

D=2 pNe™ pi=0, 2p=1.  (43)

Already for the simplest nontrivial case given by a biexpo-
nential distribution

AD=phie™7+ (1 - p)hye™7, (44)

with 0<p<1, one obtains a memory function taking on
negative values according to

2
k(t) = <)\> 28(1) - %e—(w\ﬁ(l—p)}\l)z i (45)

where with obvious notation (A\)=p\;+(1—=p)\, and AN’
=(\?)=(\)% It is important to stress that the function given
by Eq. (37) cannot be interpreted as a multiexponential dis-
tribution, since the weights in the sum over i are not always
positive. Indeed the situations described by Erlang or multi-
exponential distributions correspond to two complementary
pictures. In both cases the system moves from one state to
another in various unobserved stages or steps, each taking an
exponentially distributed time. In the case of an Erlang dis-
tribution such as Eq. (32) and (37) however the different
steps are taken in series, while for a multiexponential distri-
bution as given by Eq. (43) the different stages are entered in
parallel, following one of the available possibilities, each
with its own weight. In both cases one describes a non-
Markovian situation in terms of elementary Markovian
building blocks described by exponential distributions, the
non-Markovian features appearing because one does not
have information on the fictitious intermediate steps. For a
suitable choice of weights and parameters one can approxi-
mate any distribution by combination of stages in series and
in parallel, so that these examples are in fact quite represen-
tative.

III. QUANTUM SEMI-MARKOYV PROCESSES
A. Quantum Markov processes

In the Markovian regime the dynamics of the density ma-
trix p(z) of an open quantum system is governed by a master
equation of the relatively simple form of a first-order differ-
ential equation,

PHYSICAL REVIEW E 79, 041147 (2009)

d
2P0 =Lp0), (46)

where L is a time-independent infinitesimal generator with
the general structure

1
Lp==ilH,p]+ 2 7o AupA, = S{AIALPH.  (47)

The Hamiltonian H describes the coherent part of the time
evolution, while the A, are operators representing the various
decay modes, with y,=0 the corresponding positive decay
rates. The solution of Eq. (46) can be written in terms of a
linear map V(r)=exp(L¢) that transforms the initial state p(0)
into the state p(z) at time r=0,

p(0) — p(1) = V(1)p(0). (48)

The map V() is a well-defined quantum dynamical map pro-
vided it preserves trace and positivity when applied to a gen-
eral initial state p(0). This is granted if V(¢) is a completely
positive map, in accordance with general physical principles
[3]. This property implies that it can be written in the Kraus
form

V(1)p(0) = 2 Q,(1)p(0)QL(0), (49)

where in order to grant preservation of the trace the opera-
tors {),(f) have the property that the sum =,Q(£)Q,(7) is
equal to the unit operator. Hence, V(f) represents a com-
pletely positive dynamical semigroup known as quantum
Markov process. The master equation (46) leads to such
a semigroup if and only if the generator is of the form
of Eq. (47). This is the content of the celebrated Gorini-
Kossakowski-Sudarshan-Lindblad theorem [1,2] of para-
mount importance in both fundamental and phenomenologi-
cal approaches to the description of irreversible dynamics in
quantum mechanics [3].

For the case in which one has a closed system of equa-
tions for the populations P,(t)=(n|p(t)|n) in a fixed orthonor-
mal basis one recovers from Egs. (46) and (47) the Pauli
master equation (25). This justifies the notion of a quantum
Markov process and provides a direct connection to a clas-
sical Markov process.

B. Master equations with memory kernel

A natural non-Markovian generalization of Eq. (46) is
given by the integrodifferential equation

o) = f Ak (Dpli - 7. (50)
0

Here quantum memory effects are taken into account through
the introduction of the memory kernel K(7), which means
that the rate of change of the state p(¢) at time 7 depends on
the states p(r—7) at previous times t—7. Equations of the
form (50) typically arise in the standard Nakajima-Zwanzig
projection operator technique [28,29]. As an important lim-
iting case, the Markovian master equation (46) is recovered
for a memory kernel proportional to a é function,
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K(n)=268(7)L. (51)

To be physically acceptable the superoperator K(7) ap-
pearing in Eq. (50) must lead to a completely positive quan-
tum dynamical map V(z). The general structural characteriza-
tion of the memory kernels with this property is an unsolved
problem of central importance in the field of non-Markovian
quantum dynamics [4,22,30,31]. In fact, even the most
simple and natural choices for I(7) can lead to unphysical
results [4,20]. Here we will construct a class of memory
kernels which arises naturally as a quantum-mechanical gen-
eralization of the classical semi-Markov processes and al-
lows the formulation of criteria that guarantee complete posi-
tivity.

We consider memory kernels with the general structure

K(p=iTH).p) -3 S 3 HAL DAL,

+ 2 Yo DAL DpAL(D), (52)

that is to say of the form given by Eq. (47) apart from the
time dependence of the operators A ,(7) and of the real func-
tions y,(7). As previously done in the Markovian case let us
consider the situation in which the populations obey a closed
system of equations of motion, which then takes the form
(19) of the generalized master equation for a classical semi-
Markov process, where the memory kernel is given by

Won(7) = 20 VoD (1| A (D] m)[*. (53)

Thus, whenever the populations obey closed equations, Eq.
(46) yields the classical Markovian master equation (25),
while Eq. (50) with the kernel (52) leads under the same
conditions to the generalized master equation (19) for a clas-
sical semi-Markov process. This suggests the name quantum
semi-Markov process. Note however that this assumption of
a closed equation for the populations will not be used in the
following.

C. Conditions for complete positivity

Our next goal is the formulation of sufficient conditions
that guarantee the complete positivity of the dynamical map
V(t) corresponding to the non-Markovian master equation
defined by Egs. (50) and (52), no longer assuming that
closed equations for the populations exist.

1. Quantum dynamical map

The dynamical map V(¢) corresponding to the master
equation (50) is defined as the solution of the integrodiffer-
ential equation

iV(t) = fth’C(T)V(t— 7), (54)
dt 0

with the initial condition V(0)=1, where I denotes the iden-
tity map. Following Refs. [32,33] let us decompose the
memory kernel as

PHYSICAL REVIEW E 79, 041147 (2009)

K(7)=B(7) + C(7), (55)

where the superoperators B(7) and C(7) are defined by

B(np= 2 ya(DALDpAL(D), (56)

Crp=—ilH(),p) 3 S 7 HALDAL o). (57

We further introduce the map V,(7) as the solution of the
equation

L= f Vit = 7, (58)
dt 0

with the initial condition V,(0)=1. The Laplace transforma-
tion of Egs. (54) and (58) yields

A\ 1 A 1

V) =——"7T— Vow=—"1-—, (59)
u—K(u)

from which we get the Dyson-type identity

V(u) = Vo(u) + Vo(u)B(u) V(u). (60)

Transforming back to the time domain we obtain the equa-
tion

V(t) = Vo(1) + (Vo = B V)(¢). (61)

Regarding formally the superoperator B(7) as a perturbation
and iterating Eq. (61) one finds that the full dynamical map
V(1) can be represented as a series,

V(1) = V(1) + (Vo * B * Vo)(1)
+ (Vo B*VyxBx V() + ..., (62)

which turns out to be a useful relation in the formulation of
appropriate conditions for complete positivity.

2. Sufficient conditions for complete positivity

Let us first assume that the quantities 7y,(7) are positive
functions, which means that the superoperator B(7) defined
by Eq. (56) is completely positive. Since the property of
complete positivity is preserved under addition and convolu-
tion, the representation (62) then tells us that the full dynami-
cal map V(z) is completely positive if the map V() is com-
pletely positive. To bring this condition into an explicit form
let us assume further that the Hermitian operators H(7) and
S Yo DAL(T)A(7) are diagonal in a time-independent or-
thonormal basis {|n)} for the underlying Hilbert space, i.e.,
we have

H(7) =2, &,(7)|n)n], (63)

2 Yo DAYDA LT = 2 ky(D|n)nl, (64)

within general time-dependent eigenvalues &,(7) and k(7).
Note that the positivity of the y,(7) implies that the eigen-
values k,(7) must be positive as well.
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Equation (58) can now be solved to obtain

Vo(0)p(0) = X g, (1) || p(0) [m)(m

nm

: (65)
where the functions g,,,(7) are the solutions of

Eum(t) = = f d12,(7) + 2, (D)8t = 7). (66)

0

corresponding to the initial conditions g,,,(0)=1 and

(1) = k() iy (1) (67

Equation (65) can be proven as follows. First, one shows that
C(D(|n)(m|)==[z,(7) +z, (1) ]|n)(m|. Using this relation one
can easily check that Eq. (65) indeed represents the solution
of Eq. (58) with the initial condition V,(0)=1.

It is important to notice that the functions g,,(r) do actu-
ally coincide with the survival probabilities g,(¢) introduced
in Eq. (26). In fact, for n=m we get from Eq. (66)

gnn(t) == f din(T)gnn(t_ T)' (68)

0

The survival probabilities satisfy the same equation as can be
seen by taking the time derivative of Eq. (26) and using Eq.
(28).

One easily verifies that the representation (65) can be
brought into the Kraus form (49) if and only if the matrix
G(r) with the elements g,,,,(7) is positive. Thus, we arrive at a
sufficient condition for complete positivity. The quantum dy-
namical map V(z) corresponding to the non-Markovian mas-
ter equation (50) defined by Egs. (52), (63), and (64) with
positive y,(7) is completely positive if the condition

G(1)=[gum(®]=0 (69)

is fulfilled.

A necessary condition for Eq. (69) to hold is the positivity
of the diagonal elements g,,,(r) of G(¢) which coincide with
the survival probabilities, g,(f)=g,,(). This necessary con-
dition in turn implies the positivity of the functions f, () as
can be seen immediately from Eq. (28) because k,(f)=0.
Condition (69) therefore implies that the functions f,(¢) al-
low an interpretation as true waiting time distributions. The
positivity of the matrix G(z) therefore represents a natural
quantum generalization of the classical conditions for a
semi-Markov process.

3. Markovian limit and Lindblad theorem

In the Markovian limit expressed by Eq. (51) we must
have k,l(T)=2k25(T) and sn(7)=2825(7'), such that z,(7)
=2125( 7). Equation (66) then reduces to the time-local equa-
tion

Eam(8) = = (20 +22) (D), (70)

which is easily solved to yield
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B = By (D0, hy() = e, (71)

Since a matrix with elements of this form is always positive
we conclude that condition (69) is automatically satisfied. It
follows from our results that the corresponding quantum dy-
namical map represents a completely positive semigroup.
Hence, we see that our formulation correctly describes the
transition to the Markovian limit and that it contains as a
special case the “if” part of the Lindblad theorem.

4. Negative memory functions

Up to now we have considered the case that the superop-
erator B(7) is completely positive which led to the sufficient
condition (69) for the complete positivity of the dynamical
map. The complete positivity of B(7) implies that the
memory functions must be positive, k,(r)=0. However, in
many physical relevant applications these functions can take
on negative values.

To include cases with negative kernel functions we con-
sider the following general class of memory kernels. We use
again the decomposition of the form given by Eq. (55),
where C(7) is given by the expressions (57), (63), and (64).
However, we now drop the condition that the map B(7) is
completely positive, supposing instead that it takes the fol-
lowing general form:

B(7) = 2 k,(7)B,, (72)

where the k,(7) are real functions, not necessarily positive,
and the B, are completely positive and time-independent
maps. The full memory kernel can thus be written as

,p})~

Without the assumption of the complete positivity of B(7)
the complete positivity of V() is generally not sufficient for
the complete positivity of the dynamical map V(¢). However,
we can conclude from the representation (62) that V(r) is
completely positive if both V,(¢) and (Vy*B)(r) are com-
pletely positive. We have

K== 1.1+ 2 1,2 B,

(73)

(Vo B)(0)p= 2 fo(D) )| Byplm)(m|, (74)
Inm
where
Fom(®) = f dk)(7) &t = 7). (75)
0

The map (74) is completely positive if for all / the matrix
with elements £ (7) is positive,

Fo=[f,»O]=0. (76)

Summarizing, we have shown that the quantum dynamical
map V() is completely positive if the conditions (69) and
(76) are fulfilled.

We can again provide the connection of the obtained re-
sults to the interpretation in terms of a classical semi-Markov
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process. In fact, a necessary condition for Eq. (76) is the
positivity of the functions f}, () which coincide with the
functions f,,(¢). Conditions (69) and (76) thus imply that g,,(z)
and f,(r) can be interpreted as survival probability and as
waiting time distribution for a classical semi-Markov pro-
cess, respectively. These conditions therefore represent a
generalization of the classical conditions to the quantum case
for memory functions k() that are allowed to take on nega-
tive values.

D. Examples

To illustrate the theory developed here and the various
conditions for the complete positivity of the dynamical map
we will now introduce a few examples. In particular we will
consider a structure for the memory kernel which encom-
passes and generalizes a model recently studied in the litera-
ture for the description of memory effects [4,21]. For this
class of memory kernels we are in particular able to give
necessary and sufficient conditions for the complete positiv-
ity of the dynamical evolution.

1. Lattice systems

Let us consider the following memory kernel:

K(p=—ilH(),p)~ 3 k(). }

+ 2 ik (D)m)npln)(m) . (77)

mn

The special feature of this kernel is given by the fact that it
leads to closed equations of motion for the populations
P (0)=p,,()=(n|p(t)|n) and for the coherences p,,,(t)
=(n|p(t)|m), n# m. In fact, we find from the master equation
with the above kernel that the coherences satisfy the same
equation as the quantities g,,(7), namely, Eq. (66). Taking
into account the initial conditions we thus have

Pum(t) = &) Prn(0), 1 # m. (78)

On the other hand, the populations are found to obey the
generalized master equation (19) with W,,,(7) = m,,,k,.(7). We
assume that this master equation describes a classical semi-
Markov process and denote by T,,,(¢) the corresponding con-
ditional transition probability. The diagonals of the density
matrix can therefore be written as

pnn(t) = E Tnm(t)pmm(o) . (79)

Thus, the memory kernel (77) may be viewed as describing a
quantum particle moving on a lattice with sites labeled by n.
The dynamics of the populations is modeled through a semi-
Markov process with transition probabilities r,,, and arbi-
trary waiting time distributions f,(r), while the p,,,(t) de-
scribe the quantum coherences between different sites n and
m.

With the help of Egs. (78) and (79) we can immediately
construct the quantum dynamical map,
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V(0)p(0) = 25 gum(0)|n)n| p(0)[m)(im|

n#m

+ 2 Ty(D)|1)(m| p(0)|m)(n] (80)

nm

Let us introduce a matrix G(1)=[g,,,(f)] whose elements are
defined by

gnm(t) = [Tlm(t) - gnn(t)](snm + gnm(t) . (8 1)

The off-diagonal elements of G(1) thus coincide with those
of the matrix G(¢) introduced earlier, while the diagonals of

G(t) are given by the conditional transition probabilities
T,,(r). Then we can rewrite Eq. (80) as

V(1)p(0) = 2% Zun(D)|n)nlp(0)]m)(m]

+ 2 T(0)|n)m|p(0)|m)n]. (82)

n#m

This is an exact formal representation for the full quantum
dynamical map from which we infer that V(z) is completely

positive if and only if G(r)=0 and T,,,(t)=0 for all n+m.
Being the conditional transition probabilities of a semi-
Markov process, the T,,,(t) always satisfy of course the sec-
ond condition. Hence we obtain the result that the quantum
dynamical map V() is completely positive if and only if the
condition

G() =[gm1H]1=0 (83)

holds. This condition provides a full characterization of the
complete positivity of the class of quantum semi-Markov
processes given by Eq. (77).

Assuming the memory functions to be positive, the kernel
(77) is easily seen to be of the form introduced in Sec. IIT C 2
with the superoperator B(7) given by the completely positive
map

B(7)p = 2 k(1) m)n|pln)(m]. (84)

mn

Hence we can apply condition (69) as sufficient condition for
the complete positivity of V(z). We note that the probabilities
T,,(r) are in general larger than the corresponding survival
probabilities g,(f)=g,,(7), since the process can be in the
initial state n at time ¢ both because it has not left it and
because it has come back to it. According to Eq. (81) the
necessary and sufficient condition (83) is therefore in general
weaker than the merely sufficient condition (69). However, if
the process involves only jumps in one specific direction,
i.e., if the return probability vanishes for all states (this hap-
pens, e.g., for a purely decaying system), we have T,,(t)
=g,(t) and, hence, condition (69) becomes a necessary and
sufficient condition for the complete positivity.

An instructive special case is that of a translational invari-
ant system for which k,,(7), g,,,(t), and T, () are state inde-
pendent, i.e., k,(7)=k(7), g,,(1)=g(¢), and T,,(1)=T(z). The
conditions (69) and (83) are then automatically fulfilled,
showing that any such translational invariant process leads to
a completely positive dynamical map. The same conclusion
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holds true if we allow the memory function k(7) to become
negative. In fact, the kernel (77) is also of the form used in
Sec. III C 4 with B, given by

B,p= 2 m,,,|m)n|p|n)(m|. (85)

Condition (76) is then also satisfied by assumption because it
reduces to the condition that the waiting time distribution
f(7) corresponding to the memory function k(7) must be
positive.

2. Exponential memory functions

Memory kernels of the form (77) describe, e.g., the dy-
namics of a two-level system interacting with a bosonic
quantum reservoir, such as, for example, a two-level atom
coupled to a damped field mode. The index n now only takes
on the two values + and — and the memory kernel reads

K(1)p=k(7) |: o_po,— %{0-+0'—’ P}:|

+ k—(T)|:0'+p0.— - %{0’_0’_‘_, p}j| ’ (86)

where the jump probabilities are given by 7,_=m_,=1 and
m__=1,,=0. A typical expression arising for the time depen-
dence of the memory functions is given by [3,4,21]

ki(7)=Kee ™, (87)

with decay constants «. =0. This expression also allows an
explicit evaluation of the relevant quantities such as the func-
tions g,,,(f) and the conditional transition probabilities
T,,,(2). Inverting Eq. (31) to obtain

felw) = W) (88)

u+ ko (u)

and further calculating the inverse Laplace transform, one
finds the functions

fu(D) = 22—%-”/2 sinh(d. 7/2), (89)
with
de=\vy—4k.. (90)

The functions f.(7) are positive and normalized to one (or
identically zero) if and only if

T = max{k,,k_}, 91)

so that only in this case they can be interpreted as waiting
time distributions and the generalized master equation corre-
sponding to Eq. (86) describes a classical semi-Markov pro-
cess. In fact under the condition y?>=4«, the function f,(7)
can be expressed as a difference of two exponentials as in
Eq. (39) with the identifications
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V’yz_4K+’ (92)

s

0| =

Nop=

SRR

thus corresponding to a generalized Erlang distribution and
similarly for the function f_(7).

The conditional transition probabilities for the associated
semi-Markov process can be calculated observing that due to
Eq. (79) the quantity T,.(z) is given by the solution p, () of
the master equation obtained with the initial condition
p+.(0)=1 and similarly for T__(¢). Starting from Eq. (86) one
has the equation

p++(t) = f [k—(t - T)P——(T) - k+(t - T)P++(T):|' (93)
0

Differentiating this equation with respect to time and exploit-
ing the exponential form of the memory functions (87) to-
gether with the trace preservation one is led to a telegraph
equation of the form

ﬁ++(t) + 7p++(t) + (K+ + K—)P++(f) -k_=0. (94)

Its solution with the initial conditions p,,(0)=1 and p,.(0)
=0 gives the conditional transition probability 7,,(r) and an
analogous calculation can be performed for 7__(z). The re-
sults read

T ()= ——— 4 —* e_””z[cosh(dt/Z) + Zsinh(dz/z)] ,
K.+ K. K.+K_ d

T (1)= = + = e_”/z[cosh(dt/Z) + Zsinh(dt/Z)] ,
K.+ K_ K+ K_ d

(95)

with
_—
d=\y —4(k, + k). (96)

Note that despite the fact that d is not necessarily real, since
this is generally not implied by Eq. (91), the transition prob-
abilities themselves are always positive.

For the memory functions (87) one can also exactly cal-
culate the entries of the matrix G(¢) considered in Eq. (69).
In fact both g,.(r) and g__(¢) due to Eq. (68) and the expo-
nential form of the kernel have a second derivative which
obeys a telegraph equation and similarly for g,_(¢). The cor-
responding solutions read

gt = e"”/z[cosh(dth/Z) + dlsinh(d+t/2)} ,

+

g_(t)= e‘yt/z[cosh(d_t&) + dlsinh(d_t/Z)} , (97)
and
g, (= e"”/z{cosh(c_lt/Z) + %inh(ar/z)] , (98)
d

with d. as in Eq. (90) while
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d=\y -2(k, + K_). (99)

In particular g, _(f)=g_,(¢) since it is a real quantity. Note
that indeed minus the derivative of g, () is equal to f,(7),
according to its interpretation as survival probability, and
similarly for g__(7) and f_(¢). This entails in particular that
both g,.(r) and g__(¢) are positive nonincreasing functions
taking the value one for 7=0.

One can check that as discussed in Sec. III D 1 indeed the
inequality T,,(f) = g,,(¢) generally holds with n==. In fact
the quantity T,,(1)—g,.(¢) is equal to zero for t=0 and has a
non-negative derivative with respect to time for all values of
the parameters complying with Eq. (91). This is consistent
with the interpretation of the T,,(z) as conditional transition
probabilities which must be larger or equal to the corre-
sponding survival probabilities. In particular one immedi-
ately sees from the explicit expressions (95) and (97) that for
k_=0, so that one only has transitions in one direction,
T, (1)=g..(t) and T__()=g__()=1.

The necessary and sufficient conditions for complete posi-
tivity of the dynamics described by Eq. (86) according to the
general result Eq. (83) are thus given by

T (OT_(1) = g2, (1), (100)
together with the constraint (91), which ensures that the
populations obey a generalized master equation describing a
classical semi-Markov process. One therefore has to find out
the possible range of parameters «,, «_, and 7y for which the
inequality Eq. (100) is satisfied for all times or at least up to
a certain time. The task of finding conditions for complete
positivity of the dynamics given by Eq. (86) is indeed far
from trivial and has been accomplished only partially in the
literature [4,21].

Taking the explicit expressions (95) and (97) into account
and noting that for t=0 Eq. (100) is actually an equality, one
can look at the short-time behavior of the quantity

A(D) =T (DT__(1) - g2,(1). (101)
In view of the constraint Eq. (91) the function A is most
conveniently expressed in terms of the rescaled quantities

Ka (102)

re=

pYES

bound to the interval [0,1] and 7= . In terms of these new
variables A can be written as

r. r.

A(7) = < — + —+e_7/2h1(7')>
r_+r,

r_+r,

r r_
x( e
r_+r, r_+r,

fmmﬂ—f%w,
(103)

where
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° r
0 0.2 0.4 0.6 0.8 1 -

FIG. 1. The sign of A(7) plotted for 7=0.01. Within the white
region A is positive, while it is negative in the black regions. The
range of r. is restricted to [0,1] according to the constraint (91).

sinh<§\’1 “(r+ r+))

T
hl(T)=cosh<§\1—(V—+r+))+ VI=(r_+r,)
(104)

and

. T =<
smh(—\’l —(r_+ r+)/2)

ho(7) h(T’l r_+ )/2)+
7)=cosh| =Vl - (r_+r -
’ 2 " VI=(r_+r.)/2

(105)
The Taylor expansion of A for small 7 reads
1
A(r)=- %(ri+r3—4r+r_)7:’+(9(74), (106)
so that whenever
P+t —drr_>0, (107)

one has violation of complete positivity for very short times.
This is obviously the case for either r_=0, r,>0 or r, =0,
r_>0. The function A is plotted in Fig. 1 in the region al-
lowed by Eq. (91), still clearly taking on negative values.
Note that in standard physical situations one has r,=r_,
which corresponds to positivity of the reservoir temperature.
Indeed the condition r_=0 would correspond to a zero-
temperature reservoir. This remark confirms a result obtained
in a completely different way in [21].
For r_>0 the inequality (107) can be rewritten as

2
(5> —4(5> +1>0,
r_ r_

which is satisfied whenever

(108)
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FIG. 2. (Color online) The quantity A plotted as a function of 7
and of the ratio between the decay constants in the range [1,2
+v3]. r_ is fixed to be 0.2.

r,<(2- \E)r_ or r,>2+ \"E)r_. (109)

In these parameter regions, even when the classical condition
Eq. (91) holds, the necessary and sufficient condition Eq.
(100) for complete positivity is violated for very short times.
Assuming as discussed above r, =r_ we have thus obtained
that the decay constants must satisfy the constraint

re=r,=2+ \E)r_, (110)

so as to avoid loss of complete positivity for very short
times. A numerical analysis indicates that in this parameter
region the inequality Eq. (100) is satisfied, corresponding to
preservation of complete positivity. Indeed the triangular
white region in Fig. 1, which corresponds to positivity of the
quantity A and therefore to fulfillment of the condition (100),
gets larger with growing time. In Fig. 2 the quantity A is
plotted as a function of 7 and of the ratio r,/r_. For the case
of the spin-boson model considered in [21], where the decay
constants k. are expressed in terms of the mean number of
excitations of the reservoir at the frequency w of the two-
level system, taking Eq. (102) into account the constraint Eq.
(110) is equivalent to

Bho=In(2+13). (111)

The time evolution is therefore completely positive only for
reservoir temperatures above a certain threshold given by
kgT=0.8w.

In particular for r,=r_, which corresponds to an infinite
temperature reservoir, complete positivity is granted on the
basis of the classical condition Eq. (91) only, as already dis-
cussed in Sec. I D 1 and confirmed by other approaches
[4,21]. In fact in this case T,,(t)=T__(1)=T(¢) and g,.(r)
=g__(r)=g(1), so that the condition (100) reduces to T(z)
=g(r), which in our approach is automatically known to
be true because of the probabilistic interpretation of the
quantities involved, and corresponds to the inequality (22) in
Ref. [21].
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IV. CONCLUSIONS

We have constructed a quantum-mechanical generaliza-
tion of the classical concept of semi-Markov processes and
discussed the basic features of the resulting quantum semi-
Markov processes, including, in particular, the formulation
of mathematical criteria for the complete positivity of the
corresponding quantum dynamical maps. The main motiva-
tion of our study was the development of a structural char-
acterization of non-Markovian dynamics for a large class of
quantum processes that is relevant for physical applications.
The approach followed here could indeed be particularly
useful in applications for which a microscopic system-
environment approach is technically too complicated or im-
possible, guiding the phenomenological construction of the
memory kernel.

It is important to stress that the class of quantum semi-
Markov processes considered here does contain the Markov-
ian limit as a straightforward special case as shown at the
end of Sec. III C, thus providing a natural generalization of
quantum Markov processes. In our derivation of the various
conditions for complete positivity we have made some spe-
cific assumptions in order to obtain explicit constraints. For
example, we have assumed a certain structure for the Hamil-
tonian part and for the loss term of the memory kernel. More
general quantum semi-Markov processes can be considered
and will be the object of future investigations. In particular,
we notice that the conditions obtained in Sec. III C, which
are only sufficient, could be too stringent in certain physical
applications. It is therefore important to study further ex-
amples in order to decide whether or not a generalization of
these criteria is necessary in practice. This is particularly true
for the case of temporarily negative memory functions (see
Sec. III C 4). However, as is shown in the examples of Sec.
III D, for specific cases one can formulate conditions for the
complete positivity which are not only sufficient but also
necessary, thus leading to a complete characterization of
physically admissible memory kernels. This has been done
for the memory kernel of Eq. (86) which describes a two-
level system interacting with a bosonic reservoir, extending
the partial analysis given in [4,21]. It has been shown that
Eq. (110), together with the constraint (91) for the allowed
region of decay constants, is indeed a necessary condition for
complete positivity, and numerical evidence strongly sug-
gests that this condition is also sufficient. This criterion for
complete positivity can also be understood as a bound on the
temperature range over which the model can give physically
well-defined results.
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